March 1, 2014

Aurora over South Dakota

Aurora over South Dakota

South Dakota, USA
October 1, 2013

Image Credit & Copyright: Randy Halverson

February 28, 2014

The Great Carina Nebula


A jewel of the southern sky, the Great Carina Nebula, also known as NGC 3372, spans over 300 light-years, one of our galaxy's largest star forming regions. Like the smaller, more northerly Great Orion Nebula, the Carina Nebula is easily visible to the unaided eye, though at a distance of 7,500 light-years it is some 5 times farther away. This gorgeous telescopic portrait reveals remarkable details of the region's glowing filaments of interstellar gas and obscuring cosmic dust clouds. Wider than the Full Moon in angular size, the field of view stretches over 300 light-years across the nebula. The Carina Nebula is home to young, extremely massive stars, including the still enigmatic variable Eta Carinae, a star with well over 100 times the mass of the Sun. Eta Carinae is the brightest star near the image center, just left of the dusty Keyhole Nebula (NGC 3324). While Eta Carinae itself maybe on the verge of a supernova explosion, X-ray images indicate that the Great Carina Nebula has been a veritable supernova factory.

Image Credit & Copyright: Lóránd Fényes
Explanation from: http://apod.nasa.gov/apod/ap131015.html

February 27, 2014

M106

M106 M106   Close to the Great Bear (Ursa Major) and surrounded by the stars of the Hunting Dogs (Canes Venatici), this celestial wonder was discovered in 1781 by the metric French astronomer Pierre Mechain. Later, it was added to the catalog of his friend and colleague Charles Messier as M106. Modern deep telescopic views reveal it to be an island universe: a spiral galaxy around 30 thousand light-years across located only about 21 million light-years beyond the stars of the Milky Way. Along with prominent dust lanes and a bright central core, this colorful composite image highlights youthful blue star clusters and reddish stellar nurseries that trace the galaxy's spiral arms. The high resolution galaxy portrait is a mosaic of data from Hubble's sharp ACS camera combined with groundbased color image data. M106 (aka NGC 4258) is a nearby example of the Seyfert class of active galaxies, seen across the spectrum from radio to X-rays. Energetic active galaxies are powered by matter falling into a massive central black hole.  Image Credit: Hubble Legacy Archive; Adrian Zsilavec, Michelle Qualls, Adam Block / NOAO / AURA / NSF, André van der Hoeven Explanation from: http://apod.nasa.gov/apod/ap131003.html

Close to the Great Bear (Ursa Major) and surrounded by the stars of the Hunting Dogs (Canes Venatici), this celestial wonder was discovered in 1781 by the metric French astronomer Pierre Mechain. Later, it was added to the catalog of his friend and colleague Charles Messier as M106. Modern deep telescopic views reveal it to be an island universe: a spiral galaxy around 30 thousand light-years across located only about 21 million light-years beyond the stars of the Milky Way. Along with prominent dust lanes and a bright central core, this colorful composite image highlights youthful blue star clusters and reddish stellar nurseries that trace the galaxy's spiral arms. The high resolution galaxy portrait is a mosaic of data from Hubble's sharp ACS camera combined with groundbased color image data. M106 (aka NGC 4258) is a nearby example of the Seyfert class of active galaxies, seen across the spectrum from radio to X-rays. Energetic active galaxies are powered by matter falling into a massive central black hole.

Image Credit: Hubble Legacy Archive; Adrian Zsilavec, Michelle Qualls, Adam Block / NOAO / AURA / NSF, André van der Hoeven
Explanation from: http://apod.nasa.gov/apod/ap131003.html

February 26, 2014

NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds

NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds    NASA's Kepler mission announced Wednesday the discovery of 715 new planets. These newly-verified worlds orbit 305 stars, revealing multiple-planet systems much like our own solar system.  Nearly 95 percent of these planets are smaller than Neptune, which is almost four times the size of Earth. This discovery marks a significant increase in the number of known small-sized planets more akin to Earth than previously identified exoplanets, which are planets outside our solar system.  "The Kepler team continues to amaze and excite us with their planet hunting results," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "That these new planets and solar systems look somewhat like our own, portends a great future when we have the James Webb Space Telescope in space to characterize the new worlds.”  Since the discovery of the first planets outside our solar system roughly two decades ago, verification has been a laborious planet-by-planet process. Now, scientists have a statistical technique that can be applied to many planets at once when they are found in systems that harbor more than one planet around the same star.  To verify this bounty of planets, a research team co-led by Jack Lissauer, planetary scientist at NASA's Ames Research Center in Moffett Field, Calif., analyzed stars with more than one potential planet, all of which were detected in the first two years of Kepler's observations -- May 2009 to March 2011.  The research team used a technique called verification by multiplicity, which relies in part on the logic of probability. Kepler observes 150,000 stars, and has found a few thousand of those to have planet candidates. If the candidates were randomly distributed among Kepler's stars, only a handful would have more than one planet candidate. However, Kepler observed hundreds of stars that have multiple planet candidates. Through a careful study of this sample, these 715 new planets were verified.  This method can be likened to the behavior we know of lions and lionesses. In our imaginary savannah, the lions are the Kepler stars and the lionesses are the planet candidates. The lionesses would sometimes be observed grouped together whereas lions tend to roam on their own. If you see two lions it could be a lion and a lioness or it could be two lions. But if more than two large felines are gathered, then it is very likely to be a lion and his pride. Thus, through multiplicity the lioness can be reliably identified in much the same way multiple planet candidates can be found around the same star.  "Four years ago, Kepler began a string of announcements of first hundreds, then thousands, of planet candidates --but they were only candidate worlds," said Lissauer. "We've now developed a process to verify multiple planet candidates in bulk to deliver planets wholesale, and have used it to unveil a veritable bonanza of new worlds."  These multiple-planet systems are fertile grounds for studying individual planets and the configuration of planetary neighborhoods. This provides clues to planet formation.  Four of these new planets are less than 2.5 times the size of Earth and orbit in their sun's habitable zone, defined as the range of distance from a star where the surface temperature of an orbiting planet may be suitable for life-giving liquid water.  One of these new habitable zone planets, called Kepler-296f, orbits a star half the size and 5 percent as bright as our sun. Kepler-296f is twice the size of Earth, but scientists do not know whether the planet is a gaseous world, with a thick hydrogen-helium envelope, or it is a water world surrounded by a deep ocean.  "From this study we learn planets in these multi-systems are small and their orbits are flat and circular -- resembling pancakes -- not your classical view of an atom," said Jason Rowe, research scientist at the SETI Institute in Mountain View, Calif., and co-leader of the research. "The more we explore the more we find familiar traces of ourselves amongst the stars that remind us of home."  This latest discovery brings the confirmed count of planets outside our solar system to nearly 1,700. As we continue to reach toward the stars, each discovery brings us one step closer to a more accurate understanding of our place in the galaxy.  Launched in March 2009, Kepler is the first NASA mission to find potentially habitable Earth-size planets. Discoveries include more than 3,600 planet candidates, of which 961 have been verified as bona-fide worlds. Image Credit: NASA Explanation from: http://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/index.html

NASA's Kepler mission announced Wednesday the discovery of 715 new planets. These newly-verified worlds orbit 305 stars, revealing multiple-planet systems much like our own solar system.

Nearly 95 percent of these planets are smaller than Neptune, which is almost four times the size of Earth. This discovery marks a significant increase in the number of known small-sized planets more akin to Earth than previously identified exoplanets, which are planets outside our solar system.

"The Kepler team continues to amaze and excite us with their planet hunting results," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "That these new planets and solar systems look somewhat like our own, portends a great future when we have the James Webb Space Telescope in space to characterize the new worlds.”

Since the discovery of the first planets outside our solar system roughly two decades ago, verification has been a laborious planet-by-planet process. Now, scientists have a statistical technique that can be applied to many planets at once when they are found in systems that harbor more than one planet around the same star.

To verify this bounty of planets, a research team co-led by Jack Lissauer, planetary scientist at NASA's Ames Research Center in Moffett Field, Calif., analyzed stars with more than one potential planet, all of which were detected in the first two years of Kepler's observations -- May 2009 to March 2011.

The research team used a technique called verification by multiplicity, which relies in part on the logic of probability. Kepler observes 150,000 stars, and has found a few thousand of those to have planet candidates. If the candidates were randomly distributed among Kepler's stars, only a handful would have more than one planet candidate. However, Kepler observed hundreds of stars that have multiple planet candidates. Through a careful study of this sample, these 715 new planets were verified.

This method can be likened to the behavior we know of lions and lionesses. In our imaginary savannah, the lions are the Kepler stars and the lionesses are the planet candidates. The lionesses would sometimes be observed grouped together whereas lions tend to roam on their own. If you see two lions it could be a lion and a lioness or it could be two lions. But if more than two large felines are gathered, then it is very likely to be a lion and his pride. Thus, through multiplicity the lioness can be reliably identified in much the same way multiple planet candidates can be found around the same star.

"Four years ago, Kepler began a string of announcements of first hundreds, then thousands, of planet candidates --but they were only candidate worlds," said Lissauer. "We've now developed a process to verify multiple planet candidates in bulk to deliver planets wholesale, and have used it to unveil a veritable bonanza of new worlds."

These multiple-planet systems are fertile grounds for studying individual planets and the configuration of planetary neighborhoods. This provides clues to planet formation.

Four of these new planets are less than 2.5 times the size of Earth and orbit in their sun's habitable zone, defined as the range of distance from a star where the surface temperature of an orbiting planet may be suitable for life-giving liquid water.

One of these new habitable zone planets, called Kepler-296f, orbits a star half the size and 5 percent as bright as our sun. Kepler-296f is twice the size of Earth, but scientists do not know whether the planet is a gaseous world, with a thick hydrogen-helium envelope, or it is a water world surrounded by a deep ocean.

"From this study we learn planets in these multi-systems are small and their orbits are flat and circular -- resembling pancakes -- not your classical view of an atom," said Jason Rowe, research scientist at the SETI Institute in Mountain View, Calif., and co-leader of the research. "The more we explore the more we find familiar traces of ourselves amongst the stars that remind us of home."

This latest discovery brings the confirmed count of planets outside our solar system to nearly 1,700. As we continue to reach toward the stars, each discovery brings us one step closer to a more accurate understanding of our place in the galaxy.

Launched in March 2009, Kepler is the first NASA mission to find potentially habitable Earth-size planets. Discoveries include more than 3,600 planet candidates, of which 961 have been verified as bona-fide worlds.
Image Credit: NASA
Explanation from: http://www.nasa.gov/ames/kepler/nasas-kepler-mission-announces-a-planet-bonanza/index.html

The Pleiades Deep and Dusty

The Pleiades Deep and Dusty    The well known Pleiades star cluster is slowly destroying part of a passing cloud of gas and dust. The Pleiades is the brightest open cluster of stars on Earth's sky and can be seen from almost any northerly location with the unaided eye. The passing young dust cloud is thought to be part of Gould's belt, an unusual ring of young star formation surrounding the Sun in the local Milky Way Galaxy. Over the past 100,000 years, part of Gould's belt is by chance moving right through the older Pleiades and is causing a strong reaction between stars and dust. Pressure from the stars' light significantly repels the dust in the surrounding blue reflection nebula, with smaller dust particles being repelled more strongly. A short-term result is that parts of the dust cloud have become filamentary and stratified, as seen in this deep-exposure image.  Image Credit & Copyright: David Lane Explanation from: http://apod.nasa.gov/apod/ap140225.html

The well known Pleiades star cluster is slowly destroying part of a passing cloud of gas and dust. The Pleiades is the brightest open cluster of stars on Earth's sky and can be seen from almost any northerly location with the unaided eye. The passing young dust cloud is thought to be part of Gould's belt, an unusual ring of young star formation surrounding the Sun in the local Milky Way Galaxy. Over the past 100,000 years, part of Gould's belt is by chance moving right through the older Pleiades and is causing a strong reaction between stars and dust. Pressure from the stars' light significantly repels the dust in the surrounding blue reflection nebula, with smaller dust particles being repelled more strongly. A short-term result is that parts of the dust cloud have become filamentary and stratified, as seen in this deep-exposure image.

Image Credit & Copyright: David Lane
Explanation from: http://apod.nasa.gov/apod/ap140225.html

NASA's SDO Shows Images of Significant Solar Flare

NASA's SDO Shows Images of Significant Solar Flare    The Sun emitted a significant solar flare, peaking at 7:49 p.m. EST on February 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the Sun, captured images of the event.  Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.  This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.  Image Credit: SDO/NASA Explanation from: http://www.nasa.gov/content/goddard/nasas-sdo-shows-images-of-significant-solar-flare/index.html

The Sun emitted a significant solar flare, peaking at 7:49 p.m. EST on February 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the Sun, captured images of the event.

Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.

This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.

Image Credit: SDO/NASA
Explanation from: http://www.nasa.gov/content/goddard/nasas-sdo-shows-images-of-significant-solar-flare/index.html

February 25, 2014

Night, Sky, Stars, Steam, Gas and Aurora over Hverir

Night, Sky, Stars, Steam, Gas and Aurora over Hverir    Hverir, Iceland September 12, 2013  Image Credit & Copyright: Stéphane Vetter

Hverir, Iceland
September 12, 2013

Image Credit & Copyright: Stéphane Vetter

Filaments of the Vela Supernova Remnant

Filaments of the Vela Supernova Remnant    The explosion is over but the consequences continue. About eleven thousand years ago a star in the constellation of Vela could be seen to explode, creating a strange point of light briefly visible to humans living near the beginning of recorded history. The outer layers of the star crashed into the interstellar medium, driving a shock wave that is still visible today. A roughly spherical, expanding shock wave is visible in X-rays. This image captures some of that filamentary and gigantic shock in visible light. As gas flies away from the detonated star, it decays and reacts with the interstellar medium, producing light in many different colors and energy bands. Remaining at the center of the Vela Supernova Remnant is a pulsar, a star as dense as nuclear matter that rotates completely around more than ten times in a single second.  Image Credit & Copyright: Angus Lau, Y Van, SS Tong Explanation from: http://apod.nasa.gov/apod/ap131001.html

The explosion is over but the consequences continue. About eleven thousand years ago a star in the constellation of Vela could be seen to explode, creating a strange point of light briefly visible to humans living near the beginning of recorded history. The outer layers of the star crashed into the interstellar medium, driving a shock wave that is still visible today. A roughly spherical, expanding shock wave is visible in X-rays. This image captures some of that filamentary and gigantic shock in visible light. As gas flies away from the detonated star, it decays and reacts with the interstellar medium, producing light in many different colors and energy bands. Remaining at the center of the Vela Supernova Remnant is a pulsar, a star as dense as nuclear matter that rotates completely around more than ten times in a single second.

Image Credit & Copyright: Angus Lau, Y Van, SS Tong
Explanation from: http://apod.nasa.gov/apod/ap131001.html

February 24, 2014

Solar Eclipse over New York City

Solar Eclipse over New York City    New York City, New York, USA November 3, 2013  Image Credit & Copyright: Chris Cook

New York City, New York, USA
November 3, 2013

Image Credit & Copyright: Chris Cook

February 23, 2014

Aurora and Lenticular Clouds over Iceland

Aurora and Lenticular Clouds over Iceland    What's happening in the sky? On this cold winter night in Iceland, quite a lot. First, in the foreground, lies the largest glacier in Iceland: Vatnajokull. On the far left, bright green auroras appear to emanate from the glacier as if it was a volcano. Aurora ight is reflected by the foreground lake Jökulsárlón. On the far right is a long and unusual lenticular cloud tinged with green light emitted from another aurora well behind it. Just above this lenticular cloud are unusual iridescent lenticular clouds displaying a broad spectral range of colors. Far beyond the lenticular is the setting Moon, while far beyond even the Moon are setting stars. This image was captured in late March of 2012.  Image Credit & Copyright: Stéphane Vetter Explanation from: http://apod.nasa.gov/apod/ap131118.html

What's happening in the sky? On this cold winter night in Iceland, quite a lot. First, in the foreground, lies the largest glacier in Iceland: Vatnajokull. On the far left, bright green auroras appear to emanate from the glacier as if it was a volcano. Aurora ight is reflected by the foreground lake Jökulsárlón. On the far right is a long and unusual lenticular cloud tinged with green light emitted from another aurora well behind it. Just above this lenticular cloud are unusual iridescent lenticular clouds displaying a broad spectral range of colors. Far beyond the lenticular is the setting Moon, while far beyond even the Moon are setting stars. This image was captured in late March of 2012.

Image Credit & Copyright: Stéphane Vetter
Explanation from: http://apod.nasa.gov/apod/ap131118.html