July 29, 2017

Moon, Venus, Jupiter and Earth

Moon, Venus, Jupiter and Earth

Astronaut Scott Kelly taken this photo from the International Space Station on July 19, 2015.

Image Credit: NASA/ESA

Billions of new neighbours

Billions of new neighbours

The objects that astronomers call brown dwarfs sit somewhere between the definition of a planet and a star. They are balls of gas with more mass than a planet, but not enough mass to sustain stable hydrogen fusion like a star. Because they hardly emit any visible light, they were only first discovered in 1995 and up until today the majority of known brown dwarfs are within 1500 light-years of us.

Now, astronomers using the NACO adaptive optics infrared camera on ESO’s Very Large Telescope have observed the star cluster RCW 38 in the constellation Vela (the Sail), about 5500 light-years away. This picture shows the central part of RCW 38; the inserts on the sides show a subset of the brown dwarf candidates detected within the cluster.

The scientists found half as many brown dwarfs as stars in the cluster. From these results and from studying other star clusters, the astronomers estimate that the Milky Way contains at least between 25 to 100 billion brown dwarfs. RCW 38 probably contains even more less massive, fainter brown dwarfs, which are beyond the detection limits of this image — so this new estimate could actually be a significant underestimation. Further surveys will reveal the true number of brown dwarfs lurking in the Milky Way.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/potw1729a/

Titan's Atmosphere

Titan's Atmosphere

This natural color image shows Titan's upper atmosphere -- an active place where methane molecules are being broken apart by solar ultraviolet light and the byproducts combine to form compounds like ethane and acetylene. The haze preferentially scatters blue and ultraviolet wavelengths of light, making its complex layered structure more easily visible at the shorter wavelengths used in this image.

Lower down in the atmosphere, the haze turns into a globe-enshrouding smog of complex organic molecules. This thick, orange-colored haze absorbs visible sunlight, allowing only perhaps 10 percent of the light to reach the surface. The thick haze is also inefficient at holding in and then re-radiating infrared (thermal) energy back down to the surface. Thus, despite the fact that Titan has a thicker atmosphere than Earth, the thick global haze causes the greenhouse effect there to be somewhat weaker than it is on Earth.

Images taken with the Cassini spacecraft wide-angle camera using red, green and blue spectral filters were combined to create this natural color view. The images were obtained at a distance of approximately 9,500 kilometers (5,900 miles) from Titan on March 31, 2005. The image scale is approximately 400 meters (1,300 feet) per pixel.

Image Credit: NASA/JPL/Space Science Institute
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA06236

July 28, 2017

South Africa seen from the International Space Station

South Africa seen from the International Space Station

This photo was taken from the International Space Station on May 9, 2013, looking across the southwestern tip of the country. The image focuses on the mountainous Western Cape, dominated by the Great Escarpment, a 5,000-kilometer long mountain chain that marks the edge of the African plateau. The Cape of Good Hope hooks out from the mainland, with the city of Cape Town coloring the top in cement gray. To the east is Cape Agulhas, the southernmost point of the African continent where the Indian Ocean meets the Atlantic Ocean.

Image Credit: NASA/ESA
Explanation from: https://earthobservatory.nasa.gov/IOTD/view.php?id=82601

Star Cluster AFGL 490

Star Cluster AFGL 490

The Wide-field Infrared Survey Explorer, or WISE, has seen a cluster of newborn stars enclosed in a cocoon of dust and gas in the constellation Camelopardalis. The cluster, AFGL 490, is hidden from view in visible light by the cloud. But WISE's infrared vision sees the glow of the dust itself, and penetrates this dust to see the infant stars within.

Not much is known about this stealthy star cluster. Its distance from Earth is estimated to be about 2,300 light-years. The portion of the star-forming nebula captured in this view stretches across about 62 light-years of space.

All four infrared detectors aboard WISE were used to make this mosaic. Color is representational: blue and cyan represent infrared light at wavelengths of 3.4 and 4.6 microns, which is dominated by light from stars. Green and red represent light at 12 and 22 microns, which is mostly light from warm dust.

Image Credit: NASA/JPL-Caltech/UCLA
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA13123

Saturn's Atmosphere

Saturn's Atmosphere

This false-color view from NASA's Cassini spacecraft gazes toward the rings beyond Saturn's sunlit horizon. Along the limb (the planet's edge) at left can be seen a thin, detached haze. This haze vanishes toward the right side of the scene.

Cassini will pass through Saturn's upper atmosphere during the final five orbits of the mission, before making a fateful plunge into Saturn on Sept. 15, 2017. The region through which the spacecraft will fly on those last orbits is well above the haze seen here, which is in Saturn's stratosphere. In fact, even when Cassini plunges toward Saturn to meet its fate, contact with the spacecraft is expected to be lost before it reaches the depth of this haze.

This view is a false-color composite made using images taken in red, green and ultraviolet spectral filters. The images were obtained using the Cassini spacecraft narrow-angle camera on July 16, 2017, at a distance of about 777,000 miles (1.25 million kilometers) from Saturn. Image scale is about 4 miles (7 kilometers) per pixel on Saturn.

Image Credit: NASA/JPL-Caltech/Space Science Institute
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA21621

July 27, 2017

Aurora seen from the International Space Station

Aurora seen from the International Space Station

Expedition 52 Flight Engineer Jack Fischer of NASA shared photos of a glowing green aurora seen from his vantage point 250 miles up, aboard the International Space Station. This aurora photo was taken on June 26, 2017.

Image Credit: NASA

The Orion Nebula

The Orion Nebula

Using new observations from ESO’s VLT Survey Telescope, astronomers have discovered three different populations of young stars within the Orion Nebula Cluster. This unexpected discovery adds very valuable new insights for the understanding of how such clusters form. It suggests that star formation might proceed in bursts, where each burst occurs on a much faster time-scale than previously thought.

OmegaCAM — the wide-field optical camera on ESO’s VLT Survey Telescope (VST) — has captured the spectacular Orion Nebula and its associated cluster of young stars in great detail, producing a beautiful new image. This object is one of the closest stellar nurseries for both low and high-mass stars, at a distance of about 1350 light-years.

But this is more than just a pretty picture. A team led by ESO astronomer Giacomo Beccari has used these data of unparallelled quality to precisely measure the brightness and colours of all the stars in the Orion Nebula Cluster. These measurements allowed the astronomers to determine the mass and ages of the stars. To their surprise, the data revealed three different sequences of potentially different ages.

“Looking at the data for the first time was one of those ‘Wow!’ moments that happen only once or twice in an astronomer's lifetime,” says Beccari, lead ­author of the paper presenting the results. “The incredible quality of the OmegaCAM images revealed without any doubt that we were seeing three distinct populations of stars in the central parts of Orion.”

Monika Petr-Gotzens, co-author and also based at ESO Garching, continues, “This is an important result. What we are witnessing is that the stars of a cluster at the beginning of their lives didn’t form altogether simultaneously. This may mean that our understanding of how stars form in clusters needs to be modified.”

The astronomers looked carefully at the possibility that instead of indicating different ages, the different brightnesses and colours of some of the stars were due to hidden companion stars, which would make the stars appear brighter and redder than they really were. But this idea would imply quite unusual properties of the pairs, which have never before been observed. Other measurements of the stars, such as their rotation speeds and spectra, also indicated that they must have different ages.

“Although we cannot yet formally disprove the possibility that these stars are binaries, it seems much more natural to accept that what we see are three generations of stars that formed in succession, within less than three million years,” concludes Beccari.

The new results strongly suggest that star formation in the Orion Nebula Cluster is proceeding in bursts, and more quickly than had been previously thought.

Image Credit: ESO/G. Beccari
Explanation from: https://www.eso.org/public/news/eso1723/

Galaxy Cluster ZwCl 1358+62

Galaxy Cluster ZwCl 1358+62

This is a NASA/ESA Hubble Space Telescope image of the galaxy cluster ZwCl 1358+62. Shown in blue on the image is a map of the dark matter found within the cluster. This cluster was part of a study of 72 galaxy cluster collisions which determined that dark matter interacts with other dark matter even less than previously thought.

Image Credit: NASA/ESA
Explanation from: http://spacetelescope.org/images/heic1506g/

July 26, 2017

Saturn's Rings

Saturn's Rings

Although the rings lack the many colors of the rainbow, they arc across the sky of Saturn. From equatorial locations on the planet, they'd appear very thin since they would be seen edge-on. Closer to the poles, the rings would appear much wider; in some locations (for parts of the Saturn's year), they would even block the Sun for part of each day.

This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on April 10, 2017.

The view was obtained at a distance of approximately 680,000 miles (1.1 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 128 degrees. Image scale is 43 miles (69 kilometers) per pixel.

Image Credit: NASA/JPL-Caltech/Space Science Institute
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA21339

Spiral Galaxy NGC 4248

Spiral Galaxy NGC 4248

This beautiful clump of glowing gas, dark dust, and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs).

This image was produced by the NASA/ESA Hubble Space Telescope as it embarked upon compiling the first Hubble ultraviolet “atlas”, for which the telescope targeted 50 nearby star-forming galaxies. A sample spanning all kinds of different morphologies, masses, and structures. Studying this sample can help us to piece together the star-formation history of the Universe.

By exploring how massive stars form and evolve within such galaxies, astronomers can learn more about how, when, and where star formation occurs, how star clusters change over time, and how the process of forming new stars is related to the properties of both the host galaxy and the surrounding interstellar medium (the “stuff” that fills the space between individual stars).

This image is formed of observations from Hubble’s Wide Field Camera 3.

Image Credit: ESA/Hubble & NASA
Explanation from: https://www.spacetelescope.org/images/potw1730a/

Kinked Loop Stretching Between Two Active Regions

Kinked Loop Stretching Between Two Active Regions

Numerous arches of magnetic field lines danced and swayed above a large active region over about a 30-hour period (July 17-18, 2017). We can also see the magnetic field lines from the large active region reached out and connected with a smaller active region. Those linked lines then strengthened (become brighter), but soon began to develop a kink in them and rather swiftly faded from view. All of this activity is driven by strong magnetic forces associated with the active regions. The images were taken in a wavelength of extreme ultraviolet light.

Image Credit: NASA/GSFC/Solar Dynamics Observatory
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA21838

July 24, 2017

Lenticular Cloud over Volcano

Lenticular Cloud over Volcano

Patagonia, Argentina

Image Credit: David H. Collier/Getty Images

Spiral Galaxy NGC 7098

Spiral Galaxy NGC 7098

Approximately 95 million light-years away, in the southern constellation of Octans (The Octant), lies NGC 7098 — an intriguing spiral galaxy with numerous sets of double features. The first of NGC 7098’s double features is a duo of distinct ring-like structures that loop around the galaxy’s hazy heart. These are NGC 7098’s spiral arms, which have wound themselves around the galaxy’s luminous core. This central region hosts a second double feature: a double bar.

NGC 7098 has also developed features known as ansae, visible as small, bright streaks at each end of the central region. Ansae are visible areas of overdensity — they commonly take looping, linear, or circular shapes, and can be found at the extremities of planetary ring systems, in nebulous clouds, and, as is the case with NGC 7098, in parts of galaxies that are packed to the brim with stars.

This image is formed from data gathered by the FOcal Reducer and low dispersion Spectrograph (FORS) instrument, installed on ESO’s Very Large Telescope at Paranal Observatory. An array of distant galaxies are also visible throughout the frame, the most prominent being the small, edge-on, spiral galaxy visible to the left of NGC 7098, known as ESO 048-G007.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/potw1730a/

SN 1987a in the Large Magellanic Cloud

SN 1987a in the Large Magellanic Cloud

Glittering stars and wisps of gas create a breathtaking backdrop for the self-destruction of a massive star, called supernova 1987A, in the Large Magellanic Cloud, a nearby galaxy. Astronomers in the Southern hemisphere witnessed the brilliant explosion of this star on February 23, 1987.

Shown in this NASA/ESA Hubble Space Telescope image, the supernova remnant, surrounded by inner and outer rings of material, is set in a forest of ethereal, diffuse clouds of gas. This three-color image is composed of several pictures of the supernova and its neighboring region taken with the Wide Field and Planetary Camera 2 in September 1994, Feb. 1996 and July 1997.

Image Credit: Hubble Heritage Team (AURA/STScI/NASA/ESA)
Explanation from: https://www.spacetelescope.org/images/opo9904a/

July 23, 2017

Spiral Galaxy NGC 4242

Spiral Galaxy NGC 4242

Tucked away in the small northern constellation of Canes Venatici (The Hunting Dogs) is the galaxy NGC 4242, shown here as seen by the NASA/ESA Hubble Space Telescope. The galaxy lies some 30 million light-years from us. At this distance from Earth, actually not all that far on a cosmic scale, NGC 4242 is visible to anyone armed with even a basic telescope (as British astronomer William Herschel found when he discovered the galaxy in 1788).

This image shows the galaxy’s bright centre and the surrounding dimmer and more diffuse “fuzz”. Despite appearing to be relatively bright in this image, studies have found that NGC 4242 is actually relatively dim (it has a moderate-to-low surface brightness and low luminosity) and also supports a low rate of star formation. The galaxy also seems to have a weak bar of stars cutting through its asymmetric centre, and a very faint and poorly-defined spiral structure throughout its disc. But if NGC 4242 is not all that remarkable, as with much of the Universe, it is still a beautiful and ethereal sight.

Image Credit: ESA/Hubble & NASA
Explanation from: https://www.spacetelescope.org/images/potw1729a/

NASA’s Hubble Sees Martian Moon Orbiting the Red Planet

NASA’s Hubble Sees Martian Moon Orbiting the Red Planet
NASA’s Hubble Sees Martian Moon Orbiting the Red Planet
Over the course of 22 minutes, Hubble took 13 separate exposures, allowing astronomers to create a time-lapse image showing the tiny moon Phobos during its orbital trek (white dots) around Mars. This image is a composite of separate exposures acquired by NASA's Hubble WFC3/UVIS instrument.

The sharp eye of NASA's Hubble Space Telescope has captured the tiny moon Phobos during its orbital trek around Mars. Because the moon is so small, it appears star-like in the Hubble pictures.

Over the course of 22 minutes, Hubble took 13 separate exposures, allowing astronomers to create a time-lapse video showing the diminutive moon's orbital path. The Hubble observations were intended to photograph Mars, and the moon's cameo appearance was a bonus.

A football-shaped object just 16.5 miles by 13.5 miles by 11 miles, Phobos is one of the smallest moons in the solar system. It is so tiny that it would fit comfortably inside the Washington, D.C. Beltway.

The little moon completes an orbit in just 7 hours and 39 minutes, which is faster than Mars rotates. Rising in the Martian west, it runs three laps around the Red Planet in the course of one Martian day, which is about 24 hours and 40 minutes. It is the only natural satellite in the solar system that circles its planet in a time shorter than the parent planet's day.

About two weeks after the Apollo 11 manned lunar landing on July 20, 1969, NASA's Mariner 7 flew by the Red Planet and took the first crude close-up snapshot of Phobos. On July 20, 1976 NASA's Viking 1 lander touched down on the Martian surface. A year later, its parent craft, the Viking 1 orbiter, took the first detailed photograph of Phobos, revealing a gaping crater from an impact that nearly shattered the moon.

​Phobos was discovered by Asaph Hall on August 17, 1877 at the U.S. Naval Observatory in Washington, D.C., six days after he found the smaller, outer moon, named Deimos. Hall was deliberately searching for Martian moons.

Both moons are named after the sons of Ares, the Greek god of war, who was known as Mars in Roman mythology. Phobos (panic or fear) and Deimos (terror or dread) accompanied their father into battle.

Close-up photos from Mars-orbiting spacecraft reveal that Phobos is apparently being torn apart by the gravitational pull of Mars. The moon is marred by long, shallow grooves that are probably caused by tidal interactions with its parent planet. Phobos draws nearer to Mars by about 6.5 feet every hundred years. Scientists predict that within 30 to 50 million years, it either will crash into the Red Planet or be torn to pieces and scattered as a ring around Mars.

Orbiting 3,700 miles above the Martian surface, Phobos is closer to its parent planet than any other moon in the solar system. Despite its proximity, observers on Mars would see Phobos at just one-third the width of the full moon as seen from Earth. Conversely, someone standing on Phobos would see Mars dominating the horizon, enveloping a quarter of the sky.

From the surface of Mars, Phobos can be seen eclipsing the sun. However, it is so tiny that it doesn't completely cover our host star. Transits of Phobos across the sun have been photographed by several Mars-faring spacecraft.

The origin of Phobos and Deimos is still being debated. Scientists concluded that the two moons were made of the same material as asteroids. This composition and their irregular shapes led some astrophysicists to theorize that the Martian moons came from the asteroid belt.

However, because of their stable, nearly circular orbits, other scientists doubt that the moons were born as asteroids. Such orbits are rare for captured objects, which tend to move erratically. An atmosphere could have slowed down Phobos and Deimos and settled them into their current orbits, but the Martian atmosphere is too thin to have circularized the orbits. Also, the moons are not as dense as members of the asteroid belt.

Phobos may be a pile of rubble that is held together by a thin crust. It may have formed as dust and rocks encircling Mars were drawn together by gravity. Or, it may have experienced a more violent birth, where a large body smashing into Mars flung pieces skyward, and those pieces were brought together by gravity. Perhaps an existing moon was destroyed, reduced to the rubble that would become Phobos.

Hubble took the images of Phobos orbiting the Red Planet on May 12, 2016, when Mars was 50 million miles from Earth. This was just a few days before the planet passed closer to Earth in its orbit than it had in the past 11 years.

Image Credit: NASA, ESA, and Z. Levay (STScI), Acknowledgment: J. Bell (ASU) and M. Wolff (Space Science Institute)
Explanation from: https://www.nasa.gov/feature/goddard/2017/hubble-sees-martian-moon-orbiting-the-red-planet

Solar Flare and a Coronal Mass Ejection

Solar Flare and a Coronal Mass Ejection

A medium-sized (M2) solar flare and a coronal mass ejection (CME) erupted from the same, large active region of the Sun on July 14, 2017. The flare lasted almost two hours, quite a long duration. The coils arcing over this active region are particles spiraling along magnetic field lines, which were reorganizing themselves after the magnetic field was disrupted by the blast. Images were taken in a wavelength of extreme ultraviolet light.

Solar flares are giant explosions on the Sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). While these are the most common solar events, the Sun can also emit streams of very fast protons – known as solar energetic particle (SEP) events – and disturbances in the solar wind known as corotating interaction regions (CIRs).

Image Credit: NASA/GSFC/Solar Dynamics Observatory
Explanation from: https://www.nasa.gov/image-feature/july-14-solar-flare-and-a-coronal-mass-ejection