August 29, 2016

Omega Centauri

Omega Centauri

Omega Centauri has been known as an unusual globular cluster for a long time. A new result obtained by the NASA/ESA Hubble Space Telescope and the Gemini Observatory reveals that the explanation behind Omega Centauri's peculiarities may be a black hole hidden in its centre. One implication of the discovery is that it is very likely that Omega Centauri is not a globular cluster at all, but a dwarf galaxy stripped of its outer stars, as some scientists have suspected for a few years.

A new discovery has resolved some of the mystery surrounding Omega Centauri, the largest and brightest globular cluster in the sky. Images obtained with the Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope and data obtained by the GMOS spectrograph on the Gemini South telescope in Chile show that Omega Centauri appears to harbour an elusive intermediate-mass black hole in its centre. "This result shows that there is a continuous range of masses for black holes, from supermassive, to intermediate-mass, to small stellar mass types", explained astronomer Eva Noyola of the Max-Planck Institute for Extraterrestrial Physics in Garching, Germany, and leader of the team that made the discovery.

Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers from the southern hemisphere. Although the cluster is 17 000 light-years away, located just above the plane of the Milky Way, it appears almost as large as the full Moon when the cluster is seen from a dark rural area. Exactly how Omega Centauri should be classified has always been a contentious topic. It was first listed in Ptolemy's catalogue nearly two thousand years ago as a single star. Edmond Halley reported it as a nebula in 1677. In the 1830s the English astronomer John Herschel was the first to recognise it as a globular cluster. Now, more than a century later, this new result suggests Omega Centauri is not a globular cluster at all, but a dwarf galaxy stripped of its outer stars.

Globular clusters consist of up to one million old stars tightly bound by gravity and are found in the outskirts of many galaxies including our own. Omega Centauri has several characteristics that distinguish it from other globular clusters: it rotates faster than a run-of-the-mill globular cluster, its shape is highly flattened and it consists of several generations of stars -- more typical globulars usually consist of just one generation of old stars.

Moreover, Omega Centauri is about 10 times as massive as other big globular clusters, almost as massive as a small galaxy. These peculiarities have led astronomers to suggest that Omega Centauri may not be a globular cluster at all, but a dwarf galaxy stripped of its outer stars by an earlier encounter with the Milky Way. "Finding a black hole at the heart of Omega Centauri could have profound implications for our understanding of its past interaction with the Milky Way", said Noyola.

Eva Noyola and her colleagues measured the motions and brightnesses of the stars at the centre of Omega Centauri. The measured velocities of the stars in the centre are related to the total mass of the cluster and were far higher than expected from the mass deduced from the number and type of stars seen. So, there had to be something extraordinarily massive (and invisible) at the centre of the cluster responsible for the fast-swirling dance of stars -- almost certainly a black hole with a mass of 40 000 solar masses. "Before this observation, we had only one example of an intermediate-mass black hole -- in the globular cluster G1, in the nearby Andromeda Galaxy", said astronomer Karl Gebhardt of the University of Texas at Austin, USA, and a member of the team that made the discovery.

Although the presence of an intermediate-mass black hole is the most likely reason for the stellar speedway near the cluster's centre, astronomers have analysed a couple of other possible causes: a collection of unseen burnt-out stars such as white dwarfs or neutron stars adding extra mass, or a group of stars with elongated orbits that would make the stars closest to the centre appear to speed up.

According to Noyola these alternative scenarios are unlikely: "The normal evolution of a star cluster like Omega Centauri should not end up with stars behaving in those ways. Even if we assume that either scenario did happen somehow, both configurations are expected to be very short-lived. A clump of burnt-out stars, for example, is expected to move farther away from the cluster centre quickly. For stars with elongated orbits, these orbits are expected to become circular very quickly."

According to scientists, these intermediate-mass black holes could turn out to be "baby" supermassive black holes. "We may be on the verge of uncovering one possible mechanism for the formation of supermassive black holes. Intermediate-mass black holes like this could be the seeds of full-sized supermassive black holes." Astronomers have debated the existence of intermediate-mass black holes because they have not found strong evidence for them and there is no widely accepted mechanism for how they could form. They have ample evidence that small black holes of a few solar masses are produced when giant stars die. There is similar evidence that supermassive black holes weighing the equivalent of millions to billions of solar masses sit at the heart of many galaxies, including our own Milky Way.

Intermediate-mass black holes may be rare and exist only in former dwarf galaxies that have been stripped of their outer stars, but they could also be more common than expected, existing at the centres of globular clusters as well. A previous Hubble survey of supermassive black holes and their host galaxies showed a correlation between the mass of a black hole and that of its host. Astronomers estimate that the mass of the dwarf galaxy that may have been the precursor of Omega Centauri was roughly 10 million solar masses. If lower mass galaxies obey the same rule as more massive galaxies that host supermassive black holes, then the mass of Omega Centauri does match that of its black hole.

The team will use the European Southern Observatory's Very Large Telescope in Paranal, Chile to conduct follow-up observations of the velocity of the stars near the cluster's centre to confirm the discovery.

Image Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA), A. Cool (San Francisco State Univ.) and J. Anderson (STScI)
Explanation from:

Messier 87: Giant Galaxy is Still Growing

Messier 87

Observations with ESO’s Very Large Telescope have revealed that the giant elliptical galaxy Messier 87 has swallowed an entire medium-sized galaxy over the last billion years. For the first time a team of astronomers has been able to track the motions of 300 glowing planetary nebulae to find clear evidence of this event and also found evidence of excess light coming from the remains of the totally disrupted victim.

Astronomers expect that galaxies grow by swallowing smaller galaxies. But the evidence is usually not easy to see — just as the remains of the water thrown from a glass into a pond will quickly merge with the pond water, the stars in the infalling galaxy merge in with the very similar stars of the bigger galaxy leaving no trace.

But now a team of astronomers led by PhD student Alessia Longobardi at the Max-Planck-Institut für extraterrestrische Physik, Garching, Germany has applied a clever observational trick to clearly show that the nearby giant elliptical galaxy Messier 87 merged with a smaller spiral galaxy in the last billion years.

"This result shows directly that large, luminous structures in the Universe are still growing in a substantial way — galaxies are not finished yet!" says Alessia Longobardi. "A large sector of Messier 87's outer halo now appears twice as bright as it would if the collision had not taken place."

Messier 87 lies at the centre of the Virgo Cluster of galaxies. It is a vast ball of stars with a total mass more than a million million times that of the Sun, lying about 50 million light-years away.

Rather than try to look at all the stars in Messier 87 — there are literally billions and they are too faint and numerous be studied individually — the team looked at planetary nebulae, the glowing shells around ageing stars. Because these objects shine very brightly in a specific hue of aquamarine green, they can be distinguished from the surrounding stars. Careful observation of the light from the nebulae using a powerful spectrograph can also reveal their motions.

Just as the water from a glass is not visible once thrown into the pond — but may have caused ripples and other disturbances that can be seen if there are particles of mud in the water — the motions of the planetary nebulae, measured using the FLAMES spectrograph on the Very Large Telescope, provide clues to the past merger.

"We are witnessing a single recent accretion event where a medium-sized galaxy fell through the centre of Messier 87, and as a consequence of the enormous gravitational tidal forces, its stars are now scattered over a region that is 100 times larger than the original galaxy!" adds Ortwin Gerhard, head of the dynamics group at the Max-Planck-Institut für extraterrestrische Physik, Garching, Germany, and a co-author of the new study.

The team also looked very carefully at the light distribution in the outer parts of Messier 87 and found evidence of extra light coming from the stars in the galaxy that had been pulled in and disrupted. These observations have also shown that the disrupted galaxy has added younger, bluer stars to Messier 87, and so it was probably a star-forming spiral galaxy before its merger.

"It is very exciting to be able to identify stars that have been scattered around hundreds of thousands of light-years in the halo of this galaxy — but still to be able to see from their velocities that they belong to a common structure. The green planetary nebulae are the needles in a haystack of golden stars. But these rare needles hold the clues to what happened to the stars," concludes co-author Magda Arnaboldi (ESO, Garching, Germany).

Image Credit: Chris Mihos (Case Western Reserve University)/ESO
Explanation from:

August 28, 2016



Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. It has the longest rotation period (243 days) of any planet in the Solar System and rotates in the opposite direction to most other planets. It has no natural satellite. It is named after the Roman goddess of love and beauty. It is the second-brightest natural object in the night sky after the Moon, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun; its elongation reaches a maximum of 47.8°.

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun, and bulk composition. It is radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth. Venus is by far the hottest planet in the Solar System, with a mean surface temperature of 735 K (462 °C; 863 °F), even though Mercury is closer to the Sun. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have had water oceans in the past, but these would have vaporized as the temperature rose due to a runaway greenhouse effect. The water has probably photodissociated, and the free hydrogen has been swept into interplanetary space by the solar wind because of the lack of a planetary magnetic field. Venus's surface is a dry desertscape interspersed with slab-like rocks and is periodically resurfaced by volcanism.

As one of the brightest objects in the sky, Venus has been a major fixture in human culture for as long as records have existed. It has been made sacred to gods of many cultures, and has been a prime inspiration for writers and poets as the "morning star" and "evening star". Venus was the first planet to have its motions plotted across the sky, as early as the second millennium BC, and was a prime target for early interplanetary exploration as the closest planet to Earth. It was the first planet beyond Earth visited by a spacecraft (Mariner 2) in 1962, and the first to be successfully landed on (by Venera 7) in 1970. Venus's thick clouds render observation of its surface impossible in visible light, and the first detailed maps did not emerge until the arrival of the Magellan orbiter in 1991. Plans have been proposed for rovers or more complex missions, but they are hindered by Venus's hostile surface conditions.

Image Credit: NASA/JPL
Explanation from: