September 10, 2016

Sakurajima Volcano Eruption

Sakurajima Volcano Eruption

Kagoshima Prefecture, Japan
July 21, 2013

Image Credit & Copyright: Tom Pfeiffer

A Bow Shock Near a Young Star LL Ori

A Bow Shock Near a Young Star LL Ori

NASA's Hubble Space Telescope continues to reveal various stunning and intricate treasures that reside within the nearby, intense star-forming region known as the Great Nebula in Orion. One such jewel is the bow shock around the very young star, LL Ori, featured in this Hubble Heritage image.

Named for the crescent-shaped wave made by a ship as it moves through water, a bow shock can be created in space when two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own Sun has a less energetic version of this wind that is responsible for auroral displays on the Earth.

The material in the fast wind from LL Ori collides with slow-moving gas evaporating away from the center of the Orion Nebula, which is located to the lower right in this Heritage image. The surface where the two winds collide is the crescent-shaped bow shock seen in the image.

Unlike a water wave made by a ship, this interstellar bow shock is a three-dimensional structure. The filamentary emission has a very distinct boundary on the side facing away from LL Ori, but is diffuse on the side closest to the star, a characteristic common to many bow shocks.

A second, fainter bow shock can be seen around a star near the upper right-hand corner of the Heritage image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars.

This image was taken in February 1995 as part of the Hubble Orion Nebula mosaic. A close visitor in our Milky Way galaxy, the nebula is only 1,500 light-years from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)
Explanation from: http://hubblesite.org/newscenter/archive/releases/2002/05/image/a/

Massive Star VY Canis Majoris

VY Canis Majoris

VY Canis Majoris is one of the largest known stars in the Universe in respect of size. The diameter of this red hypergiant is about 1400 times larger than the Sun. Because of its size it is devouring itselve, consuming its fuel at fantastic rates. This star releases as much energy in the amount of seconds as our Sun does in an entire year.

Because red hypergiants are so active, their lifetimes are measured only in millions of years which is a blink of an eye compared to the lifetime of the Sun, which is measured in billions of years. At the end of their lifes they explode in hypernovas; these outbursts contain more energy than 100 supernovae.

Image Credit: NASA/ESA and R. Humphreys
Explanation from: https://www.spacetelescope.org/images/opo0703c/

Supernova Remnant SNR 0519

Supernova Remnant SNR 0519

These delicate wisps of gas make up an object known as SNR B0519-69.0, or SNR 0519 for short. The thin, blood-red shells are actually the remnants from when an unstable progenitor star exploded violently as a supernova around 600 years ago. There are several types of supernova, but for SNR 0519 the star that exploded is known to have been a white dwarf star — a Sun-like star in the final stages of its life.

SNR 0519 is located over 150 000 light-years from Earth in the southern constellation of Dorado (The Dolphinfish), a constellation that also contains most of our neighbouring galaxy the Large Magellanic Cloud (LMC). Because of this, this region of the sky is full of intriguing and beautiful deep sky objects.

The LMC orbits the Milky Way galaxy as a satellite and is the fourth largest in our group of galaxies, the Local Group. SNR 0519 is not alone in the LMC; the NASA/ESA Hubble Space Telescope also came across a similar bauble a few years ago in SNR B0509-67.5, a supernova of the same type as SNR 0519 with a strikingly similar appearance.

Image Credit: ESA/Hubble & NASA, Claude Cornen
Explanation from: https://www.spacetelescope.org/images/potw1317a/

Gamma-Ray Burst 140903A

Gamma-Ray Burst 140903AGamma-Ray Burst 140903AGamma-Ray Burst 140903A

The image on the left shows the aftermath of the Gamma-ray burst (GRB) in X-rays with Chandra. Chandra observations of how the X-ray emission from this GRB decreases over time provide important information about the properties of the jet. The image on the right shows an optical view from the Discovery Channel Telescope (DCT) with GRB 140903A in the middle of the square. The bright star in the optical image to the right of the middle is unrelated to the GRB.

Image Credit: NASA
Explanation from: http://chandra.harvard.edu/photo/2016/grb/more.html

The LEDA 36252 Galaxy

LEDA 36252 Galaxy

This image from the NASA/ESA Hubble Space Telescope shows a cosmic tadpole, with its bright head and elongated tail, wriggling through the inky black pool of space. Tadpole galaxies are rare and difficult to find in the local Universe. This striking example, named LEDA 36252, was explored as part of a Hubble study into their mysterious properties — with interesting results.

The Universe is a swirling pool of galaxies moving through the emptiness of space. Whilst spiral galaxies and ellipticals are the two main galaxy types in the Universe, there are also other, odder types — as shown in this image from the NASA/ESA Hubble Space Telescope, taken with the Wide Field Camera 3 (WFC3).

The galaxy LEDA 36252 — also known as Kiso 5639 — is an example of what is known as a tadpole galaxy because of their bright, compact heads and elongated tails. Tadpole galaxies are unusual, and rare in the local Universe — in a sample of 10 000 galaxies within the local Universe, only 20 would be tadpoles — but they are more common in the early Universe.

This image of LEDA 36252 was obtained as part of a scientific study into the galaxy’s properties. It is an ideal cosmic laboratory for astronomers to study the accretion of cosmic gas, starburst activity, and the formation of globular star clusters.

The stars in tadpole galaxies are generally very old — living fossils from the early Universe and from the time when these galaxies formed. LEDA 36252 is in general no exception to that.

However, studying LEDA 36252 has led also to some unexpected results: its head contains a mass of surprisingly young stars with a total mass equivalent to some 10 000 Suns. These stars are grouped into large clusters and appear to consist mainly of hydrogen and helium with hardly any other elements. Astronomers think that this new burst of star formation was triggered when the galaxy accreted primordial gas — gas which was only very slightly enriched by other elements created by stellar fusion processes in the past — from its surroundings.

Also the elongated tail, seen stretching away from the head and scattered with bright blue stars, contains at least four distinct star-forming regions. These appear to be older than the one in the head.

The observations also showed signs of strong stellar winds and supernova explosions, which have blasted holes through LEDA 36252’s head and created multiple cavities. Wispy filaments, comprising gas and some stars, extend away from the main body of the cosmic tadpole.

The WFC3 observations comprising this image cover a wide portion of the spectrum, including ultraviolet, optical, H-alpha, and infrared emission. Together, they paint a beautifully detailed picture of LEDA 36252.

Image Credit: NASA, ESA
Explanation from: https://www.spacetelescope.org/news/heic1612/

September 8, 2016

Messier 83

Messier 83

Nicknamed the Southern Pinwheel, M83 is undergoing more rapid star formation than our own Milky Way galaxy, especially in its nucleus. The sharp "eye" of the Wide Field Camera 3 (WFC3) has captured hundreds of young star clusters, ancient swarms of globular star clusters, and hundreds of thousands of individual stars, mostly blue supergiants and red supergiants.

The image, taken in August 2009, provides a close-up view of the myriad stars near the galaxy's core, the bright whitish region at far right.

WFC3's broad wavelength range, from ultraviolet to near-infrared, reveals stars at different stages of evolution, allowing astronomers to dissect the galaxy's star-formation history.

The image reveals in unprecedented detail the current rapid rate of star birth in this famous "grand design" spiral galaxy. The newest generations of stars are forming largely in clusters on the edges of the dark dust lanes, the backbone of the spiral arms. These fledgling stars, only a few million years old, are bursting out of their dusty cocoons and producing bubbles of reddish glowing hydrogen gas.

The excavated regions give a colourful "Swiss cheese" appearance to the spiral arm. Gradually, the young stars' fierce winds (streams of charged particles) blow away the gas, revealing bright blue star clusters. These stars are about 1 million to 10 million years old. The older populations of stars are not as blue.

A bar of stars, gas, and dust slicing across the core of the galaxy may be instigating most of the star birth in the galaxy's core. The bar funnels material to the galaxy's centre, where the most active star formation is taking place. The brightest star clusters reside along an arc near the core.

The remains of about 60 supernova blasts, the deaths of massive stars, can be seen in the image, five times more than known previously in this region. WFC3 identified the remnants of exploded stars. By studying these remnants, astronomers can better understand the nature of the progenitor stars, which are responsible for the creation and dispersal of most of the galaxy's heavy elements.

M83, located in the Southern Hemisphere, is often compared to M51, dubbed the Whirlpool galaxy, in the Northern Hemisphere. Located 15 million light-years away in the constellation Hydra, M83 is two times closer to Earth than M51.

Image Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
Explanation from: https://www.spacetelescope.org/images/opo0929b/

The Tarantula Nebula

Tarantula Nebula

The Tarantula is situated 170,000 light-years away in the Large Magellanic Cloud (LMC) in the Southern sky and is clearly visible to the naked eye as a large milky patch. Astronomers believe that this smallish irregular galaxy is currently going through a violent period in its life. It is orbiting around the Milky Way and has had several close encounters with it. It is believed that the interaction with the Milky Way has caused an episode of energetic star formation - part of which is visible as the Tarantula Nebula.

Just above the centre of the image there is a huge cluster of very hot stars called R136. The stars in R136 are also among the most massive stars we know. R136 is also a very young cluster, its oldest stars being "just" 5 million years old or so. Its smallest stars, however, are still forming, so astronomers observe R136 to try to understand the early stages of stellar evolution. Near the lower edge of the image we find the star cluster Hodge 301. Hodge 301 is almost 10 times older than R136. Some of the stars in Hodge 301 are so old that they have already exploded as supernovae. The shockwave from this explosion has compressed the gas in the Tarantula into the filaments and sheets that are seen around the cluster.

This mosaic of the Tarantula Nebula consists of images from the NASA/ESA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) and was created by 23 year old amateur astronomer Danny LaCrue. The image was constructed by 15 individual exposures taken through three narrow-band filters allowing light from ionised oxygen (501 nm, shown as blue), hydrogen-alpha (656 nm, shown as green) and ionised sulphur (672 nm, shown as red). The exposure time for the individual WFPC2 images vary between 800 and 2800 seconds in each filter. The Hubble data have been superimposed onto images taken through matching narrow-band filters with the European Southern Observatory's New Technology Telescope at the La Silla Observatory, Chile. Additional image processing was done by the Hubble European Space Agency Information Centre.

Image Credit: ESA/NASA, ESO and Danny LaCrue
Explanation from: https://www.spacetelescope.org/images/heic0416a/

Open Star Cluster NGC 2547

Open Star Cluster NGC 2547

This pretty sprinkling of bright blue stars is the cluster NGC 2547, a group of recently formed stars in the southern constellation of Vela (The Sail). This image was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile.

The Universe is an old neighbourhood — roughly 13.8 billion years old. Our galaxy, the Milky Way, is also ancient — some of its stars are more than 13 billion years old. Nevertheless, there is still a lot of action: new objects form and others are destroyed. In this image, you can see some of the newcomers, the young stars forming the cluster NGC 2547.

But, how young are these cosmic youngsters really? Although their exact ages remain uncertain, astronomers estimate that NGC 2547’s stars range from 20 to 35 million years old. That doesn't sound all that young, after all. However, our Sun is 4600 million years old and has not yet reached middle age. That means that if you imagine that the Sun as a 40 year-old person, the bright stars in the picture are three-month-old babies.

Most stars do not form in isolation, but in rich clusters with sizes ranging from several tens to several thousands of stars. While NGC 2547 contains many hot stars that glow bright blue, a telltale sign of their youth, you can also find one or two yellow or red stars which have already evolved to become red giants. Open star clusters like this usually only have comparatively short lives, of the order of several hundred million years, before they disintegrate as their component stars drift apart.

Clusters are key objects for astronomers studying how stars evolve through their lives. The members of a cluster were all born from the same material at about the same time, making it easier to determine the effects of other stellar properties.

The star cluster NGC 2547 lies in the southern constellation of Vela (The Sail), about 1500 light-years from Earth, and is bright enough to be easily seen using binoculars. It was discovered in 1751 by the French astronomer Nicolas-Louis de Lacaille during an astronomical expedition to the Cape of Good Hope in South Africa, using a tiny telescope of less than two centimetres aperture.

Between the bright stars in this picture you can see plenty of other objects, especially when zooming in. Many are fainter or more distant stars in the Milky Way, but some, appearing as fuzzy extended objects, are galaxies, located millions of light-years beyond the stars in the field of view.

Image Credit: ESO
Explanation from: https://www.eso.org/public/news/eso1316/

September 7, 2016

Aurora over Nordland Fylke

Aurora over Nordland Fylke

The aurora borealis traces the shifting patterns of the Earth's magnetic field, creating a spectacular midwinter show in Nordland Fylke, Norway.

Image Credit & Copyright: Arild Heitmann
Explanation by: Royal Observatory Greenwich

Spiral Galaxy Messier 98

Spiral Galaxy Messier 98

The colour blue has many associations — coldness, sadness, serenity. However, the colour holds a completely different meaning for astronomers, as demonstrated by the edge-on spiral galaxy Messier 98.

Messier 98, also known as NGC 4192, is located approximately 50 million light-years away in the constellation of Coma Berenices (Berenice's Hair). In this spectacular image from ESO’s New Technology Telescope (NTT), the galaxy’s perimeter, rippled with gas and dust, is dotted with pockets of blueish light. These are regions filled with very young stars, which are so hot that they glow with a bright blue hue. These young stars are burning at such high temperatures that they are emitting fierce radiation, burning away some of the dense material that surrounds them. In total, Messier 98 is thought to contain one trillion stars!

The NTT is a 3.58-metre telescope at the La Silla Observatory, which pioneered the use of active optics and was the first in the world to have a computer-controlled main mirror.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/potw1636a/

Around the star cluster Terzan 5

star cluster Terzan 5

This wide-field image, based on data from Digitized Sky Survey 2, shows the whole region around the stellar grouping Terzan 5.

Image Credit: ESO/Digitized Sky Survey 2

Globular Cluster Terzan 5

Globular Cluster Terzan 5

Peering through the thick dust clouds of the galactic bulge an international team of astronomers has revealed the unusual mix of stars in the stellar cluster known as Terzan 5. The new results indicate that Terzan 5 is in fact one of the bulge's primordial building blocks, most likely the relic of the very early days of the Milky Way.

This image is from the NASA/ESA Hubble Space Telescope.

Image Credit: ESO/F. Ferraro
Explanation from: https://www.eso.org/public/images/eso1630b/

Hubble discovers rare fossil relic of early Milky Way

Terzan 5

Using ESO’s Very Large Telescope and other telescopes a fossilised remnant of the early Milky Way harbouring stars of hugely different ages has been revealed by an international team of astronomers. This stellar system resembles a globular cluster, but is like no other cluster known. It contains stars remarkably similar to the most ancient stars in the Milky Way and bridges the gap in understanding between our galaxy’s past and its present.

Terzan 5, 19 000 light-years from Earth in the constellation of Sagittarius (the Archer) and in the direction of the galactic centre, has been classified as a globular cluster for the forty-odd years since its detection. Now, an Italian-led team of astronomers have discovered that Terzan 5 is like no other globular cluster known.

The team scoured data from the Multi-conjugate Adaptive Optics Demonstrator, installed at the Very Large Telescope, as well as from a suite of other ground-based and space telescopes. They found compelling evidence that there are two distinct kinds of stars in Terzan 5 which not only differ in the elements they contain, but have an age-gap of roughly 7 billion years.

The ages of the two populations indicate that the star formation process in Terzan 5 was not continuous, but was dominated by two distinct bursts of star formation. “This requires the Terzan 5 ancestor to have large amounts of gas for a second generation of stars and to be quite massive. At least 100 million times the mass of the Sun,” explains Davide Massari, co-author of the study, from INAF, Italy, and the University of Groningen, Netherlands.

Its unusual properties make Terzan 5 the ideal candidate for a living fossil from the early days of the Milky Way. Current theories on galaxy formation assume that vast clumps of gas and stars interacted to form the primordial bulge of the Milky Way, merging and dissolving in the process.

“We think that some remnants of these gaseous clumps could remain relatively undisrupted and keep existing embedded within the galaxy,” explains Francesco Ferraro from the University of Bologna, Italy, and lead author of the study. “Such galactic fossils allow astronomers to reconstruct an important piece of the history of our Milky Way.”

While the properties of Terzan 5 are uncommon for a globular cluster, they are very similar to the stellar population which can be found in the galactic bulge, the tightly packed central region of the Milky Way. These similarities could make Terzan 5 a fossilised relic of galaxy formation, representing one of the earliest building blocks of the Milky Way.

This assumption is strengthened by the original mass of Terzan 5 necessary to create two stellar populations: a mass similar to the huge clumps which are assumed to have formed the bulge during galaxy assembly around 12 billion years ago. Somehow Terzan 5 has managed to survive being disrupted for billions of years, and has been preserved as a remnant of the distant past of the Milky Way.

“Some characteristics of Terzan 5 resemble those detected in the giant clumps we see in star-forming galaxies at high-redshift, suggesting that similar assembling processes occurred in the local and in the distant Universe at the epoch of galaxy formation,“ continues Ferraro.

Hence, this discovery paves the way for a better and more complete understanding of galaxy assembly. “Terzan 5 could represent an intriguing link between the local and the distant Universe, a surviving witness of the Galactic bulge assembly process,” explains Ferraro while commenting on the importance of the discovery. The research presents a possible route for astronomers to unravel the mysteries of galaxy formation, and offers an unrivaled view into the complicated history of the Milky Way.

Image Credit: ESO/F. Ferraro
Explanation from: https://www.eso.org/public/news/eso1630/

September 6, 2016

10 000 Galaxies

10 000 Galaxies

Nearly as deep as the Hubble Ultra Deep Field, which contains approximately 10 000 galaxies, this incredible image from the NASA/ESA Space Telescope reveals thousands of colourful galaxies in the constellation of Leo (The Lion). This vibrant view of the early Universe was captured as part of the Frontier Fields campaign, which aims to investigate galaxy clusters in more detail than ever before, and to explore some of the most distant galaxies in the Universe.

Galaxy clusters are massive. They can have a tremendous impact on their surroundings, with their immense gravity warping and amplifying the light from more distant objects. This phenomenon, known as gravitational lensing, can help astronomers to see galaxies that would otherwise be too faint, aiding our hunt for residents of the primordial Universe.

MACS J1149.5+2223 is a galaxy cluster located approximately five billion light-years away. In 2012, it helped astronomers uncover one of the most distant galaxies ever discovered. Light from the young galaxy, magnified 15 times by the galaxy cluster, first shone when our 13.7-billion-year-old Universe was a mere 500 million years old — just 3.6 per cent of its current age!

In 2014 and 2015, MACS J1149.5+2223 was observed as part of the Frontier Fields campaign. While one of Hubble’s cameras observed the galaxy cluster itself, another simultaneously captured the spectacular scene pictured above, of an “unremarkable” patch of space. Referred to as a parallel field, this image — when compared to other similar fields — will help astronomers understand how the Universe looks in different directions.

Image Credit: ESA/Hubble & NASA, Judy Schmidt
Explanation from: https://www.spacetelescope.org/images/potw1621a/

Glowing Gas and Dark Dust in the Large Magellanic Cloud Galaxy

Glowing Gas and Dark Dust in the Large Magellanic Cloud Galaxy

This shot from the NASA/ESA Hubble Space Telescope shows a maelstrom of glowing gas and dark dust within one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC).

This stormy scene shows a stellar nursery known as N159, an HII region over 150 light-years across. N159 contains many hot young stars. These stars are emitting intense ultraviolet light, which causes nearby hydrogen gas to glow, and torrential stellar winds, which are carving out ridges, arcs, and filaments from the surrounding material.

At the heart of this cosmic cloud lies the Papillon Nebula, a butterfly-shaped region of nebulosity. This small, dense object is classified as a High-Excitation Blob, and is thought to be tightly linked to the early stages of massive star formation.

N159 is located over 160 000 light-years away. It resides just south of the Tarantula Nebula (heic1402), another massive star-forming complex within the LMC. It was previously imaged by Hubble’s Wide Field Planetary Camera 2, which also resolved the Papillon Nebula for the first time.

Image Credit: ESA/Hubble & NASA
Explanation from: https://www.spacetelescope.org/images/potw1636a/

Star HBC 1 and Nebula IRAS 00044+6521

Star HBC 1 and Nebula IRAS 00044+6521

Surrounded by an envelope of dust, the subject of this NASA/ESA Hubble Space Telescope image is a young pre-main-sequence star known as HBC 1. The star is in an immature and adolescent phase of life, hence its classification — most of a Sun-like star’s life is spent in a stage comparable to human adulthood dubbed the main sequence.

In this view, HBC 1 illuminates a wispy reflection nebula known as IRAS 00044+6521. Formed from clouds of interstellar dust, reflection nebulae do not emit any visible light of their own and instead — like fog encompassing a lamppost — shine via the light from the stars embedded within. Though nearby stars cannot ionise the nebula’s non-gaseous contents, as with brighter emission nebulae, scattered starlight can make the dust visible.

What makes this seemingly ordinary reflection nebula more interesting are three nearby Herbig–Haro objects known as HH 943, HH 943B and HH 943A — which are not visible in this image — located within IRAS 00044+6521 itself. Herbig–Haro objects are small patches of dust, hydrogen, helium and other gases that form when narrow jets of gas ejected by young stars such as HBC 1 collide with clouds of gas and dust. Lasting just a few thousand years, these objects rapidly move away from their parent star before dissipating into space.

Image Credit: ESA/Hubble & NASA, Judy Schmidt
Explanation from: https://www.spacetelescope.org/images/potw1607a/

September 5, 2016

Hurricane Lester

Hurricane Lester
Hurricane Lester appeared well-developed and had a clear eye in imagery from the MODIS instrument, or Moderate Resolution Imaging Spectroradiometer, aboard NASA's Aqua satellite. Aqua passed over Lester on September 1 at 6:50 p.m. EDT (22:50 UTC).

Hurricane Lester
On August 31 at 6:50 p.m. EDT (22:50 UTC) the VIIRS instrument aboard NASA-NOAA's Suomi NPP satellite saw Hurricane Lester moving into the Central Pacific Ocean.

Hurricane Lester
At 7:25 p.m. EDT (23:25 UTC) on August 29, NASA-NOAA's Suomi NPP satellite captured an image of Category 3 Hurricanes Lester in the Pacific Ocean.

Hurricane Lester
On August 28 at 6:05 p.m. EDT NASA-NOAA's Suomi NPP satellite captured an image of Hurricane Lester in the Eastern Pacific Ocean.

Image Credit: NASA Goddard MODIS Rapid Response Team/NOAA

Nearby Dust Clouds in the Milky Way Galaxy

Nearby Dust Clouds in the Milky Way Galaxy

The yearly ritual of spring cleaning clears a house of dust as well as dust "bunnies," those pesky dust balls that frolic under beds and behind furniture. NASA's Hubble Space Telescope has photographed similar dense knots of dust and gas in our Milky Way Galaxy. This cosmic dust, however, is not a nuisance. It is a concentration of elements that are responsible for the formation of stars in our galaxy and throughout the universe.

These opaque, dark knots of gas and dust are called "Bok globules," and they are absorbing light in the center of the nearby emission nebula and star-forming region, NGC 281. The globules are named after astronomer Bart Bok, who proposed their existence in the 1940's.

Bok hypothesized that giant molecular clouds, on the order of hundreds of light-years in size, can become perturbed and form small pockets where the dust and gas are highly concentrated. These small pockets become gravitationally bound and accumulate dust and gas from the surrounding area. If they can capture enough mass, they have the potential of creating stars in their cores; however, not all Bok globules will form stars. Some will dissipate before they can collapse to form stars. That may be what's happening to the globules seen here in NGC 281.

Near the globules are bright blue stars, members of the young open cluster IC 1590. The cluster is made up of a few hundred stars. The cluster's core, off the image towards the top, is a tight grouping of extremely hot, massive stars with an immense stellar wind. The stars emit visible and ultraviolet light that energizes the surrounding hydrogen gas in NGC 281. This gas then becomes super heated in a process called ionization, and it glows pink in the image.

The Bok globules in NGC 281 are located very close to the center of the IC 1590 cluster. The exquisite resolution of these Hubble observations shows the jagged structure of the dust clouds as if they are being stripped apart from the outside. The heavy fracturing of the globules may appear beautifully serene but is in fact evident of the harsh, violent environment created by the nearby massive stars.

The Bok globules in NGC 281 are visually striking nonetheless. They are silhouetted against the luminous pink hydrogen gas of the emission nebula, creating a stark visual contrast. The dust knots are opaque in visual light. Conversely, the nebulous gas surrounding the globules is transparent and allows light from background stars and even background galaxies to shine through.

These images were taken with Hubble's Advanced Camera for Surveys in October 2005. The hydrogen-emission image that clearly shows the outline of the dark globules was combined with images taken in red, blue, and green light in order to help establish the true color of the stars in the field. NGC 281 is located nearly 9,500 light-years away in the direction of the constellation Cassiopeia.

Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)
Explanation from: http://hubblesite.org/newscenter/archive/releases/2006/13/image/a/

Jupiter's South Pole

Jupiter's South Pole

This image from NASA's Juno spacecraft provides a never-before-seen perspective on Jupiter's south pole.

The JunoCam instrument acquired the view on August 27, 2016, when the spacecraft was about 58,700 miles (94,500 kilometers) above the polar region. At this point, the spacecraft was about an hour past its closest approach, and fine detail in the south polar region is clearly resolved.

Unlike the equatorial region's familiar structure of belts and zones, the poles are mottled by clockwise and counterclockwise rotating storms of various sizes, similar to giant versions of terrestrial hurricanes. The south pole has never been seen from this viewpoint, although the Cassini spacecraft was able to observe most of the polar region at highly oblique angles as it flew past Jupiter on its way to Saturn in 2000.

Image Credit: NASA/JPL-Caltech/SwRI/MSSS
Explanation from: http://photojournal.jpl.nasa.gov/catalog/PIA21032

September 4, 2016

Hurricane Madeline

Hurricane Madeline

Suomi NPP satellite, Orbit of the Earth
August 30, 2016

Image Credit: NASA Earth Observatory/Suomi NPP

NGC 5426 & NGC 5427

NGC 5426 & NGC 5427

NGC 5426 and NGC 5427 are two spiral galaxies of similar sizes engaged in a dramatic dance. It is not certain that this interaction will end in a collision and ultimately a merging of the two galaxies, although the galaxies have already been affected. Together known as Arp 271, this dance will last for tens of millions of years, creating new stars as a result of the mutual gravitational attraction between the galaxies, a pull seen in the bridge of stars already connecting the two. Located 90 million light-years away towards the constellation of Virgo (the Virgin), the Arp 271 pair is about 130 000 light-years across. It was originally discovered in 1785 by William Herschel. Quite possibly, our own Milky Way will undergo a similar collision in about five billion years with the neighbouring Andromeda galaxy, which is now located about 2.6 million light-years away from the Milky Way.

This image was taken with the EFOSC instrument, attached to the 3.58-metre New Technology Telescope at ESO's La Silla Observatory in Chile. The data were acquired through three different filters (B, V, and R) for a total exposure time of 4440 seconds. The field of view is about 4 arcminutes.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/potw1035a/

Jupiter's Southern Lights

Jupiter's Southern Lights

This infrared image gives an unprecedented view of the southern aurora of Jupiter, as captured by NASA's Juno spacecraft on August 27, 2016.

The planet's southern aurora can hardly be seen from Earth due to our home planet's position in respect to Jupiter's south pole. Juno's unique polar orbit provides the first opportunity to observe this region of the gas-giant planet in detail.

Juno's Jovian Infrared Auroral Mapper (JIRAM) camera acquired the view at wavelengths ranging from 3.3 to 3.6 microns -- the wavelengths of light emitted by excited hydrogen ions in the polar regions. The view is a mosaic of three images taken just minutes apart from each other, about four hours after the perijove pass while the spacecraft was moving away from Jupiter.

Image Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM
Explanation from: http://photojournal.jpl.nasa.gov/catalog/PIA21033