April 11, 2015

What it would look like if Planets were the same distance away from the Earth as the Moon is?

if planets were where the Moon


Venus as Earth's Moon
Diameter 12,104 km | 7,521 milesVenus as Earth's Moon


Mars as Earth's Moon
Diameter 6,792 km | 4,220 miles
Mars as Earth's Moon


Jupiter as Earth's Moon
Diameter 139,822 km | 86,881 milesJupiter as Earth's Moon


Saturn as Earth's Moon
Diameter 116,464 km | 72,367 miles
Saturn as Earth's Moon


Uranus as Earth's Moon
Diameter 50,724 km | 31,518 miles
Uranus as Earth's Moon

Neptune as Earth's Moon
Diameter 49,244 km | 30,599 miles
Neptune as Earth's Moon

Images Credit: Ron Miller

Exploded Star Blooms Like a Cosmic Flower

Supernova G299

G299 was left over by a particular class of supernovas called Type Ia. Astronomers think that a Type Ia supernova is a thermonuclear explosion – involving the fusion of elements and release of vast amounts of energy − of a white dwarf star in a tight orbit with a companion star. If the white dwarf’s partner is a typical, Sun-like star, the white dwarf can become unstable and explode as it draws material from its companion. Alternatively, the white dwarf is in orbit with another white dwarf, the two may merge and can trigger an explosion.

Image Credit: NASA/CXC/U.Texas
Explanation from: https://www.nasa.gov/mission_pages/chandra/exploded-star-blooms-like-flower-photo.html

April 10, 2015

Barnard 3 Nebula

Barnard 3 Nebula

NASA's Wide-field Infrared Survey Explorer (WISE) mission presents the "Wreath nebula." Though this isn't the nebula's official name (it's actually called Barnard 3, or IRAS Ring G159.6-18.5), one might picture a wreath in these bright green and red dust clouds -- a ring of evergreens donned with a festive red bow, a jaunty sprig of holly, and silver bells throughout. Interstellar clouds like these are stellar nurseries, places where baby stars are being born. 

The green ring (evergreen) is made of tiny particles of warm dust whose composition is very similar to smog found here on Earth. The red cloud (bow) in the middle is probably made of dust that is more metallic and cooler than the surrounding regions. The bright star in the middle of the red cloud, called HD 278942, is so luminous that it is likely what is causing most of the surrounding ring to glow. In fact its powerful stellar winds are what cleared out the surrounding warm dust and created the ring-shaped feature in the first place. The bright greenish-yellow region left of center (holly) is similar to the ring, though more dense. The bluish-white stars (silver bells) scattered throughout are stars located both in front of, and behind, the nebula. 

Regions similar to this nebula are found near the band of the Milky Way galaxy in the night sky. The "wreath" is slightly off this band, near the boundary between the constellations of Perseus and Taurus, but at a relatively close distance of only about 1,000 light-years, the cloud is a still part of our Milky Way. 

The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light from 12 and 22 microns, respectively, which is mostly emitted by dust.

Image Credit: NASA/JPL-Caltech/UCLA
Explanation from: http://www.nasa.gov/mission_pages/WISE/multimedia/gallery/pia15252.html

Aurora over Donnelly Creek

Aurora Donnelly Creek Alaska

Donnelly Creek, Alaska
March 17, 2015

Image Credit & Copyright: Sebastian Saarloos

April 9, 2015

Alpha Centauri and Beta Centauri

Alpha Centauri and Beta Centauri

Image Credit: John Colosimo/ESO

An APEX view of Star Formation in the Orion Nebula

Star Formation in the Orion Nebula

This dramatic new image of cosmic clouds in the constellation of Orion reveals what seems to be a fiery ribbon in the sky. The orange glow represents faint light coming from grains of cold interstellar dust, at wavelengths too long for human eyes to see. It was observed by the ESO-operated Atacama Pathfinder Experiment (APEX) in Chile.

In this image, the submillimetre-wavelength glow of the dust clouds is overlaid on a view of the region in the more familiar visible light, from the Digitized Sky Survey 2. The large bright cloud in the upper right of the image is the well-known Orion Nebula, also called Messier 42.

Image Credit: ESO/Digitized Sky Survey 2
Explanation from: http://www.eso.org/public/images/eso1321a/

April 8, 2015

Oceans in the Solar System

Earth isn't the only ocean world in our Solar System. Oceans could exist in diverse forms on moons and dwarf planets, offering clues in the quest to discover life beyond our home planet.

This illustration depicts the best-known candidates in our search for life in the Solar System.

Oceans in the Solar SystemWater on EarthWater on CeresWater on EuropaWater on GanymedeWater on CallistoWater on EnceladusWater on TitanWater on MimasWater on TritonWater on Pluto

Image Credit: NASA/JPL-Caltech

The Solar System and Beyond is Awash in Water

Water in the Solar System and Beyond

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways.

"NASA science activities have provided a wave of amazing findings related to water in recent years that inspire us to continue investigating our origins and the fascinating possibilities for other worlds, and life, in the universe," said Ellen Stofan, chief scientist for the agency. "In our lifetime, we may very well finally answer whether we are alone in the solar system and beyond."

The chemical elements in water, hydrogen and oxygen, are some of the most abundant elements in the universe. Astronomers see the signature of water in giant molecular clouds between the stars, in disks of material that represent newborn planetary systems, and in the atmospheres of giant planets orbiting other stars.

There are several worlds thought to possess liquid water beneath their surfaces, and many more that have water in the form of ice or vapor. Water is found in primitive bodies like comets and asteroids, and dwarf planets like Ceres. The atmospheres and interiors of the four giant planets -- Jupiter, Saturn, Uranus and Neptune -- are thought to contain enormous quantities of the wet stuff, and their moons and rings have substantial water ice.

Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn.

Scientists using NASA's Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice.

Europa and Enceladus are thought to have an ocean of liquid water beneath their surface in contact with mineral-rich rock, and may have the three ingredients needed for life as we know it: liquid water, essential chemical elements for biological processes, and sources of energy that could be used by living things. NASA's Cassini mission has revealed Enceladus as an active world of icy geysers. Recent research suggests it may have hydrothermal activity on its ocean floor, an environment potentially suitable for living organisms.

NASA spacecraft have also found signs of water in permanently shadowed craters on Mercury and our moon, which hold a record of icy impacts across the ages like cryogenic keepsakes.

While our solar system may seem drenched in some places, others seem to have lost large amounts of water.

On Mars, NASA spacecraft have found clear evidence that the Red Planet had water on its surface for long periods in the distant past. NASA's Curiosity Mars Rover discovered an ancient streambed that existed amidst conditions favorable for life as we know it.

More recently, NASA scientists using ground-based telescopes were able to estimate the amount of water Mars has lost over the eons. They concluded the planet once had enough liquid water to form an ocean occupying almost half of Mars' northern hemisphere, in some regions reaching depths greater than a mile (1.6 kilometers). But where did the water go?

It's clear some of it is in the Martian polar ice caps and below the surface. We also think much of Mars' early atmosphere was stripped away by the wind of charged particles that streams from the sun, causing the planet to dry out. NASA's MAVEN mission is hard at work following this lead from its orbit around Mars.

The story of how Mars dried out is intimately connected to how the Red Planet's atmosphere interacts with the solar wind. Data from the agency's solar missions -- including STEREO, Solar Dynamics Observatory and the planned Solar Probe Plus -- are vital to helping us better understand what happened.

Understanding the distribution of water in our solar system tells us a great deal about how the planets, moons, comets and other bodies formed 4.5 billion years ago from the disk of gas and dust that surrounded our sun. The space closer to the sun was hotter and drier than the space farther from the sun, which was cold enough for water to condense. The dividing line, called the "frost line," sat around Jupiter's present-day orbit. Even today, this is the approximate distance from the sun at which the ice on most comets begins to melt and become "active." Their brilliant spray releases water ice, vapor, dust and other chemicals, which are thought to form the bedrock of most worlds of the frigid outer solar system.

Scientists think it was too hot in the solar system's early days for water to condense into liquid or ice on the inner planets, so it had to be delivered -- possibly by comets and water-bearing asteroids. NASA's Dawn mission is currently studying Ceres, which is the largest body in the asteroid belt between Mars and Jupiter. Researchers think Ceres might have a water-rich composition similar to some of the bodies that brought water to the three rocky, inner planets, including Earth.

The amount of water in the giant planet Jupiter holds a critical missing piece to the puzzle of our solar system's formation. Jupiter was likely the first planet to form, and it contains most of the material that wasn't incorporated into the sun. The leading theories about its formation rest on the amount of water the planet soaked up. To help solve this mystery, NASA's Juno mission will measure this important quantity beginning in mid-2016.

Looking further afield, observing other planetary systems as they form is like getting a glimpse of our own solar system's baby pictures, and water is a big part of that story. For example, NASA's Spitzer Space Telescope has observed signs of a hail of water-rich comets raining down on a young solar system, much like the bombardment planets in our solar system endured in their youth.

With the study of exoplanets -- planets that orbit other stars -- we are closer than ever to finding out if other water-rich worlds like ours exist. In fact, our basic concept of what makes planets suitable for life is closely tied to water: Every star has a habitable zone, or a range of distances around it in which temperatures are neither too hot nor too cold for liquid water to exist. NASA's planet-hunting Kepler mission was designed with this in mind. Kepler looks for planets in the habitable zone around many types of stars.

Recently verifying its thousandth exoplanet, Kepler data confirm that the most common planet sizes are worlds just slightly larger than Earth. Astronomers think many of those worlds could be entirely covered by deep oceans. Kepler's successor, K2, continues to watch for dips in starlight to uncover new worlds.

The agency's upcoming TESS mission will search nearby, bright stars in the solar neighborhood for Earth- and super-Earth-sized exoplanets. Some of the planets TESS discovers may have water, and NASA's next great space observatory, the James Webb Space Telescope, will examine the atmospheres of those special worlds in great detail.

It's easy to forget that the story of Earth's water, from gentle rains to raging rivers, is intimately connected to the larger story of our solar system and beyond. But our water came from somewhere -- every world in our solar system got its water from the same shared source. So it's worth considering that the next glass of water you drink could easily have been part of a comet, or an ocean moon, or a long-vanished sea on the surface of Mars. And note that the night sky may be full of exoplanets formed by similar processes to our home world, where gentle waves wash against the shores of alien seas.

Image Credit: NASA
Explanation from: http://www.nasa.gov/jpl/the-solar-system-and-beyond-is-awash-in-water/index.html

April 7, 2015

Searching for Water in the Solar System and Beyond

Searching for Water in the Solar System and Beyond

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links many seemingly unrelated worlds in surprising ways.

Perhaps the most surprising water worlds are the five icy moons of Jupiter and Saturn that show strong evidence of oceans beneath their surfaces: Ganymede, Europa and Callisto at Jupiter, and Enceladus and Titan at Saturn. Scientists using NASA's Hubble Space Telescope recently provided powerful evidence that Ganymede has a saltwater, sub-surface ocean, likely sandwiched between two layers of ice.

In this artist’s concept, the moon Ganymede orbits the giant planet Jupiter. The Hubble Space Telescope observed aurorae on the moon generated by Ganymede’s magnetic fields. A saline ocean under the moon’s icy crust best explains shifting in the auroral belts measured by Hubble.

Image Credit: NASA/ESA
Explanation from: http://www.nasa.gov/content/searching-for-water-in-the-solar-system-and-beyond/

The Milky Way Galaxy over Capitol Reef National Park

The Milky Way Galaxy over Capitol Reef National Park

Capitol Reef National Park, Utah, USA

Image Credit & Copyright: Dave Lane

April 6, 2015

Orion's Belt: Alnitak, Alnilam, Mintaka

Orions Belt: Alnitak, Alnilam, Mintaka, Horsehead Nebula, Flame Nebula 

Alnitak, Alnilam, and Mintaka, are the bright bluish stars from east to west (left to right) along the diagonal in this gorgeous cosmic vista. Otherwise known as the Belt of Orion, these three blue supergiant stars are hotter and much more massive than the Sun. They lie about 1,500 light-years away, born of Orion's well-studied interstellar clouds. In fact, clouds of gas and dust adrift in this region have intriguing and some surprisingly familiar shapes, including the dark Horsehead Nebula and Flame Nebula near Alnitak at the lower left. The famous Orion Nebula itself lies off the bottom of this colorful star field.

Image Credit & Copyright: Sergi Verdugo Martínez
Explanation from: http://apod.nasa.gov/apod/ap110121.html

Mammoth Stars seen by Hubble Space Telescope

Mammoth Stars - Hubble Space Telescope

The image shows a pair of colossal stars, WR 25 and Tr16-244, located within the open cluster Trumpler 16. This cluster is embedded within the Carina Nebula, an immense cauldron of gas and dust that lies approximately 7500 light-years from Earth in the constellation of Carina, the Keel. WR 25 is the brightest, situated near the centre of the image. The neighbouring Tr16-244 is the third brightest, just to the upper left of WR 25. The second brightest, to the left of WR 25, is a low mass star located much closer to the Earth than the Carina Nebula.

Image Credit: NASA, ESA and Jesús Maíz Apellániz (Instituto de Astrofísica de Andalucía, Spain)
Explanation from: http://www.spacetelescope.org/images/heic0822a/

April 5, 2015

The Egg Nebula: Rainbow Image of a Dusty Star

Egg Nebula - CRL 2688

Resembling a rippling pool illuminated by underwater lights, the Egg Nebula offers astronomers a special look at the normally invisible dust shells swaddling an aging star. These dust layers, extending over one-tenth of a light-year from the star, have an onionskin structure that forms concentric rings around the star. A thicker dust belt, running almost vertically through the image, blocks off light from the central star. Twin beams of light radiate from the hidden star and illuminate the pitch-black dust, like a shining flashlight in a smoky room.

The artificial "Easter-Egg" colors in this image are used to dissect how the light reflects off the smoke-sized dust particles and then heads toward Earth.

Dust in our atmosphere reflects sunlight such that only light waves vibrating in a certain orientation get reflected toward us. This is also true for reflections off water or roadways. Polarizing sunglasses take advantage of this effect to block out all reflections, except those that align to the polarizing filter material. It's a bit like sliding a sheet of paper under a door. The paper must be parallel to the floor to pass under the door.

Hubble's Advanced Camera for Surveys has polarizing filters that accept light that vibrates at select angles. In this composite image, the light from one of the polarizing filters has been colored red and only admits light from about one-third of the nebula. Another polarizing filter accepts light reflected from a different swath of the nebula. This light is colored blue. Light from the final third of the nebula is from a third polarizing filter and is colored green. Some of the inner regions of the nebula appear whitish because the dust is thicker and the light is scattered many times in random directions before reaching us. (Likewise, polarizing sunglasses are less effective if the sky is very dusty).

By studying polarized light from the Egg Nebula, scientists can tell a lot about the physical properties of the material responsible for the scattering, as well as the precise location of the central (hidden) star. The fine dust is largely carbon, manufactured by nuclear fusion in the heart of the star and then ejected into space as the star sheds material. Such dust grains are essential ingredients for building dusty disks around future generations of young stars, and possibly in the formation of planets around those stars.

The Egg Nebula is located 3,000 light-years away in the constellation Cygnus. This image was taken with Hubble's Advanced Camera for Surveys in September and October 2002.

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)
Explanation from: http://hubblesite.org/newscenter/archive/releases/2003/09/image/a/