February 24, 2017

Exoplanet TRAPPIST-1e

Exoplanet TRAPPIST-1e

TRAPPIST-1e (also known as 2MASS J23062928-0502285 e) is an exoplanet, likely rocky, orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1 approximately 40 light-years (12.1 parsecs) away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

It was one of seven new exoplanets to be discovered orbiting the star using observations from the Spitzer Space Telescope. The exoplanet is within the star's habitable zone.

Mass, radius, and temperature

TRAPPIST-1e is an Earth-sized exoplanet, meaning it has a mass and radius close to that of Earth. It has an equilibrium temperature of 251.3 K (−22 °C; −7 °F), which is close to Earth's equilibrium temperature. It has a radius of around 0.92 R⊕ and a mass of 0.62 M⊕. It also has a similar density to Earth as well.

Host star

The planet orbits an (late M-type) ultracool dwarf star named TRAPPIST-1. The star has a mass of 0.08 M☉ and a radius of 0.11 R☉. It has a temperature of 2550 K and is at least 500 million years old. In comparison, the Sun is 4.6 billion years old and has a temperature of 5778 K. The star is metal-rich, with a metallicity ([Fe/H]) of 0.04, or 109% the solar amount. This is particularly odd as such low-mass stars near the boundary between brown dwarfs and hydrogen-fusing stars should be expected to have considerably less metal content than the Sun. Its luminosity (L☉) is 0.05% of that of the Sun.

The star's apparent magnitude, or how bright it appears from Earth's perspective, is 18.8. Therefore, it is too dim to be seen with the naked eye.


TRAPPIST-1e orbits its host star with an orbital period of about 6 days and an orbital radius of about 0.028 times that of Earth's (compared to the distance of Mercury from the Sun, which is about 0.38 AU).


The exoplanet was announced to be either orbiting within the habitable zone of its parent star, the region where, with the correct conditions and atmospheric properties, liquid water may exist on the surface of the planet. TRAPPIST-1e has a radius of around 0.92 R⊕, so it is very likely rocky. Its host star is a red ultracool dwarf, with only about 8% of the mass of the Sun (close to the boundary between brown dwarfs and hydrogen-fusing stars). As a result, stars like TRAPPIST-1 have the ability to live up to 4–5 trillion years, 400–500 times longer than the Sun will live. Because of this ability to live for long periods of time, it is likely TRAPPIST-1 will be one of the last remaining stars when the Universe is much older than it is now, when the gas needed to form new stars will be exhausted, and the remaining ones begin to die off.

The planet is very likely tidally locked, with one side of its hemisphere permanently facing towards the star, while the opposite side shrouded in eternal darkness. However, between these two intense areas, there would be a sliver of habitability – called the terminator line, where the temperatures may be suitable (about 273 K (0 °C; 32 °F)) for liquid water to exist. Additionally, a much larger portion of the planet may be habitable if it supports a thick enough atmosphere to transfer heat to the side facing away from the star.

Image Credit: NASA/R. Hurt/T. Pyle
Explanation from: https://en.wikipedia.org/wiki/TRAPPIST-1e


  1. Looking forward to meet these TRAPPIST1-e fellows.πŸ”­πŸŒ—πŸ‘ΎπŸ‘½πŸš€

  2. The information i just learned is really informative..... thanks